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flicting points of view of laboratory 
physicists and coherence theorists on 
correlation-induced spectral changes 
arising from the partial coherence of 
primary and secondary light sources. It 
is shown that, under normal laboratory 
conditions and in the Fraunhofer ap- 
proximation, the directional spectrum of 
light does not change on propagation in 
free space, and that each frequency 
component of the total spectrum is pre- 
served in accordance with the principle 
of energy conservation. It is demon- 
strated, and illustrated by examples, 
that descriptions of diffraction by the 

theory of partial coherence and by clas- 
sical wave optics are fully equivalent 
for incoherent primary sources. A 
statistical approach is essential, and co- 
herence theory is required, for partially 
coherent primary sources. 
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1.   Introduction 

"The number of different optical phenomena 
has become in our time so great that caution must 
be taken so as to avoid being deceived, and also to 
refer the phenomena always to the simple laws. 
This is more necessary in the case of diffraction, as 
we shall see, than in all the other phenomena." 
This quote appeared in a classical memoir, "New 
Modification of Light by the Mutual Influence and 
the Diffraction of the Rays," which Fraunhofer 
published in 1821 [1]. It is still apropos today, as 
new issues concerning the modification of spectra 
by diffraction have arisen in the recent past. 

In a paper published in 1986, Wolf [2] raised the 
interesting question "whether the normalized spec- 
trum of light remains unchanged on propagation 
through free space." He considered this to be the 
case when the spectrum from a partially coherent 

source is emitted isotropically. He coined the term 
"invariance of the spectrum of light on propaga- 
tion" to describe this isotropic propagation of a 
spectrum and noted that obviously there exist 
sources whose spectra are not emitted isotropically. 
The spectral properties of such sources have subse- 
quently become known as "correlation-induced 
spectral modifications" or "Wolf shifts." In this 
context, the word "source" denotes either a "pri- 
mary" (physical) source of radiation, or a "sec- 
ondary" source such as a diffracting aperture. 

Wolf has emphasized that he was concerned with 
physical mechanisms that produce spectral modifi- 
cations of a still unknown nature. For example, in 
Ref. [2] he mentioned astrophysical measurements 
and posed the question "whether source correla- 
tions may perhaps not give rise to differences 
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between the spectrum of the emitted light and the 
spectrum of the detected light that originates in 
some stellar sources." In Ref. [3] he considered 
non-cosmological source correlations which "must 
clearly be manifestations of some cooperative phe- 
nomena. At the atomic level possible candidates 
may perhaps be superradiance and superfluores- 
cence." 

Wolfs papers prompted a large number of publi- 
cations by himself and others on the subject of cor- 
relation-induced modifications. Regrettably, this 
literature includes papers which have led to misin- 
terpretations of the physical nature of Wolf shifts. 
For the most part, these papers analyzed classical 
diffraction and interference experiments with inco- 
herent sources within the context of coherence the- 
ory. It is likely that they were merely intended to 
convey illustrations of correlation-induced modifi- 
cations, but nonetheless they have raised questions 
concerning the similarity and differences between 
statistical optics and classical wave optics. The 
present paper attempts to clarify these issues inso- 
far as laboratory applications of optical theories 
are concerned. 

2.   Outline 

There are three major questions that have been 
raised with respect to Wolf shifts encountered in 
the laboratory. 

Does the spectrum of partially coherent light change 
on propagation in free space, and are such changes 
consistent with the principle of energy conservation? 
This question arises from repeated statements, e.g., 
Refs. [3-7] that the spectrum of light is not invari- 
ant on free-space propagation. For example: "It 
has been demonstrated in the last few years, both 
theoretically and experimentally that, in general, 
the spectrum of light generated by a partially co- 
herent source changes on propagation, even in free 
space" [5]. The experiments cited here did not per- 
tain to free-space propagation in a literal sense but 
were diffraction [8-10] or interference [11] experi- 
ments in which the spectra observed in different 
directions were found to be different, as might be 
expected in such experiments. In Sec. 4 of this pa- 
per, we address the issue of energy conservation 
from the point of view that "free-space propaga- 
tion" means the unimpeded propagation of light 
outside of sources and in the absence of absorp- 
tion, photoluminescence and similar mechanisms 
that can destroy or create spectral components. 
Diffraction at clear apertures is not regarded as 

free-space propagation, since apertures impede in- 
cident wave fronts by truncating them. The word 
"spectrum" is interpreted as the functional form of 
the spectral concentrations of measurable radiant 
quantities. We distinguish between "directional 
spectra" which are observed in a given direction, 
and "total spectra" which are obtained by (physical 
or mathematical) integrations of spectral radiant 
quantities over a specified space domain. A direc- 
tional spectrum is considered "unchanged" if the 
relative spectral distribution of the pertinent spec- 
tral concentration does not change along the path 
of a ray. A total spectrum is considered "pre- 
served" if it does not change within the boundaries 
of the specified domain. Our conclusion will be 
that coherence theory does not predict spectral 
modifications of directional spectra due to the 
free-space propagation of light in normal labora- 
tory situations, and that total spectra obey the en- 
ergy principle for each spectral component 
separately. 

Do the theory of partial coherence and the classical 
Huyghens-Fresnel-Kirchhojf diffraction theory give 
different results in situations that involve incoherent 
physical sources? Which of them should be applied 
for solutions of practical problems? These questions 
arise from publications in which Fraunhofer dif- 
fraction [12] and Young's interference experiment 
[13,14] were reexamined by coherence theory for 
incoherent primary sources. The findings of these 
publications were consistent with classical results, 
but were presented in a manner so highly abstract 
that they could be mistaken as manifestations of 
hitherto unknown phenomena. In Sec. 5 of this pa- 
per, we will demonstrate that the theory of partial 
coherence and the Huyghens-Fresnel-Kirchhoff 
theory give identical results in the case of an inco- 
herent primary source. We will emphasize that co- 
herence theory is required if the primary source is 
partially coherent. 

Are traditional radiometric practices afflicted by 
previously unknown errors due to the partial coher- 
ence of light? One of the above-mentioned papers 
[9] reported experimental results that conflicted 
with classical diffraction theory for incoherent pri- 
mary sources such as those used, but was repeat- 
edly cited [6,9,12] as evidence that radiometric 
measurements by national standardizing laborato- 
ries may be in error due to a lack of consideration 
of Wolf shifts. For example: "... the large scatter 
which exists in the spectroradiometry scales main- 
tained by different national laboratories has up to 
now not been satisfactorily explained. ... The spec- 
trum of the transmitted radiation undergoes fre- 
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quency shifts ... which were not taken into account 
in specifying the spectroradiometric scales" [6]. 
Nugent and Gardner [15] have since shown that, 
for an incoherent source and an optical system 
consisting of a series of thin apertures and lenses, 
diffraction is the only physical effect that can intro- 
duce spectral changes, and that diffraction effects 
are too small to be a significant source of error in 
spectroradiometric calibrations. As their paper has 
effectively addressed the issue of calibration errors, 
this question will not be pursued further in this pa- 
per except within the context of an example given 
in Sec. 5.2. However, most of the conclusions of the 
paper are pertinent to optical radiometry with par- 
tially coherent physical sources. 

In Sec. 3, we define relevant terms which could 
otherwise be misunderstood or interpreted differ- 
ently. Section 6 contains concluding remarks. 

3.   Definitions 

To avoid the risk of misunderstandings due to 
poorly defined nomenclature, the most important 
terms and symbols used in this paper are summa- 
rized in the following. For a more detailed explana- 
tion of these terms, the reader is referred to 
pertinent review articles [16-19] and textbooks 
[20-22]. The following symbols will be used (see 
Figs. 1, 3, 5): 

t denotes time, T is a time delay, c is the speed of 
light in vacuum, A is the wavelength, w = 2T7C/A is 
the circular frequency, and k =2'rTlK = o}lc is the 
circular wavenumber of the light; 

P and Q are points in space, P and Q are their 
position vectors with respect to the origin of a 
coordinate system, dP and dg are area elements 
at these points, PQ is the distance and PQ is the 
vector from /• to <2, n is a surface normal and 
(nJ'Q) is the angle enclosed by this normal and 
the vector PQ. 

Additional symbols will be introduced as needed. 
Lightface type is used for scalar quantities, and 
boldface for vectors and area elements. Multiple 
integral signs are avoided where possible so that, 
for example, fdPdQ... denotes a four-fold integral. 

The basic quantities of coherence theory used in 
this paper are the "mutual coherence function" 
r{PuPi,r) of two points in an optical radiation field 
(the point Pi being considered at a time T later 
than the point P2) and its Fourier transform, the 

"cross-spectral density" W(PiJ'2,(a): 

r(A^2,T) = < ViP,^ + r)V\P2,t) > 

= iAa>Q-'""W{P,^2,o>), (1) 

W{Pi^2,(») = (l/27r)/dT &•-" r{PiJ>2,T),        (2) 

where V{Pi,t) is the complex wave amplitude (as 
defined in coherence theory) of the radiation field 
at the space-time point (Pi,t)V* is the complex con- 
jugate, and <... > denotes a finite power signal or 
an ergodic ensemble average. The cross-spectral 
density W(PiJ^2,(o) has no negative-frequency com- 
ponents. 

The following special forms of these functions 
are required for physical interpretations of theoret- 
ical results: The radiant flux density at a surface 
element dP± perpendicular to the direction of light 
propagation at the point P, 

E(P) = r{PJ>,Q) = dq&/dPx[N/m='], (3) 

and the spectral radiant flux density (spectral con- 
centration of E^(P) with respect to frequency) at 
P, 

E^(P) = W(PJ',o)) = d2*/(dPxdw) 

= d*JdPx[N/m2/Hz], (4) 

where fp is the radiant flux, and d<P„ is the spectral 
radiant flux incident on dPj.. Radiant flux, radiant 
flux density, and spectral radiant flux density are 
often called "energy flux," "optical intensity" and 
"spectral power density," and are denoted by dif- 
ferent symbols in theoretical optics. In this paper, 
the terms and symbols recommended in the Inter- 
national Lighting Vocabulary [23] will be used. 

Spectral concentrations with respect to fre- 
quency, wavelength, etc., are denoted by subscripts, 
w. A, etc., and are also referred to by the adjective 
"spectral." The term "normalized spectrum" intro- 
duced by Wolf [2] refers to the spectral concentra- 
tion of a radiant quantity divided by that quandty 
itself, so that the ratio 0„/^ represents the normal- 
ized frequency spectrum of radiant flux. This nor- 
malization appears to have no effect on the topics 
discussed in this paper. 

The quantities defined by Eqs. (1) through (4) 
are often evaluated in a "far-field" approximation. 
In most papers on coherence this appears to be the 
Fraunhofer approximation of classical diffraction 
theory. To avoid confusion, we will specify all ap- 
proximations made in this paper. 
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4.   Free-Space Propagation of Cross- 
Spectral Density. Spectral 
Preservation 

The propagation of cross-spectral density in free 
space is governed by two Helmholtz equations, 

(Ai+k^)W(PiJ'2,(o)==0,   / = 1,2, (5) 

which can be solved by means of Green functions 
in a manner analogous to that used in Kirchhoff s 
diffraction theory. According to Parrent [24], the 
general solution for the cross-spectral density at 
two space points Pi and P2, due to a plane poly- 
chromatic source, is 

W(A,P2,^) = l/(2T7)^/deidQ2 

X cos(n ,eiPi)cos(« yQiPj) 

X [(1 -ikQiP0il + ikQ2P2y(QiPi G2P2)'] 

X WiQhQ2,o)) exp[/i(QiP, -J22P2)], (6) 

where Qi and Q2 are two points inside the source 
domain and the other symbols are explained in Fig. 
1. This equation is usually simplified by making two 
geometrical assumptions: 

1. The distances QiPi and Q2P2 are large com- 
pared to the wavelength A, so that 

(1 -ikQiPi)il+ikQ2P2)/(QiPi QJ'2f 

-kViQiPi Q2P2). (7) 

2. The angles (n,QiPi) and {n,Q2P2) and the fac- 
tor l/(QiPi Q2P2) do not vary appreciably within the 
source domain and are approximated by their val- 
ues at the source center, so that 

COS(« ,S,/>1)C0S(« ,Q2P2)/{QlPl Q2P2) 

~cos0icosft!/{rir2). (8) 

This gives 

W{PiJ'2,<o) = (cos0iCos^)/(AVir2) 

x/dQidgz W(QuQ2,co) cxp[ikiQ,Pi-Q2P2)].   (9) 

In the Fraunhofer approximation, the distances 
QiPi and QJ'2 in the argument of the exponential 
function are expressed by 

Qi 

Q, 

P, 

-   P, 

Fig. 1. Notation pertaining to free-space propagation of cross- 
spectral density. The points and light paths shown are not copla- 
nar. 

iQPiy = (.nc^-Q-f>   QPi~n-fK'Qi.      (10) 

Hence the spectral radiant flux d<P„ defined by Eq. 
(4) may be evaluated by substituting P\—P2=P, 
n=r2=r, 61 = 62=6, and a] = a5 = a into Eq. (9). 
Thus, 

d^„ = dFi W(P J^,o))~cos^d sine 69 d^ 

x/dQidgz W(QuQ2,(o) exp[-/A:a-(ei-e2)],  (11) 

where (iP^=rhmdded(l>, and a = (cos^sin0, 
sin<^sin9,cos0) is the unit vector in the direction of 
light propagation at P. This shows that d<P„, de- 
pends only on the angular position of the point of 
observation P, not on its distance from the source. 
Therefore, the directional radiant flux spectrum 
does not change on propagation in free space. 

The total radiant flux spectrum emitted by the 
source into the positive hemisphere is obtained by 
integrating Eq. (11) over all directions: 0< fl< ir/2 
and 0< (j>^2ir. Introducing sum and difference co- 
ordinates in the source plane. 

fi^=i(Gi + fi2),   Q-=Qi-Q2, (12) 

and reversing the order of integrations, we find 

'P. = Sd<P^~JdQ^{JdQ-W(j2^+iQ-,Q^-iQ-,o>) 

X Jd9s\ndcos^9jd<f> exp(^-ika-Q-)}.        (13) 

The triple integral in curled brackets that appears 
in this expression depends on g+ only. Therefore, 
Eq. (13) shows that the radiant flux spectrum, 
integrated over all directions, is equal to a single 
integral over the source plane. This implies preser- 
vation of the spectrum, as defined in Sec. 2. Equa- 
tion (13) can be brought into a form more familiar 
to radiometrists, 
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*.=/de+M„(e+), (14) 

by defining 

M„(e.) = {•••}= (27r/A^)/de_ 

^WiQ,+m-,Q^-iQ-,c^Mk\Q-m\Q-\)  (15) 

as the "generalized spectral radiant exitance" of 
the source. Equation (15), where ji is the spherical 
Bessel function of the first kind and order, was 
derived by Marchand and Wolf [16]. 

Equations (11) and (13) constitute the laws of 
energy conservation, in the Fraunhofer approxima- 
tion, for the free-space propagation of light from a 
planar source of any coherence. Equation (11) 
states that the directional spectrum does not 
change on propagation in free-space. Equation 
(13) states that energy is conserved for each spec- 
tral component separately. If the light propagation 
is anisotropic, the directional radiant flux spectrum 
will generally differ from the radiant exitance spec- 
trum, but spectral components missing in any one 
direction of propagation will be present in other 
directions. This is reminiscent of Newton's famous 
experimentum crucis depicted in Fig. 2, which 
proved that the colors dispersed by one prism can 
be recombined by another. It is not difficult to 
imagine similar ways of recovering a source spec- 
trum that propagates anisotropically. For example, 
if the "source" is a diffracting aperture illuminated 
by an incoherent physical source, then, the dif- 
fracted light will be spectrally anisotropic. It can, 
however, be collected by an integrating sphere so 
that under idealized conditions the spectral radiant 
exitance of the exit port of the sphere will be an 
exact duplicate of the spectral radiant exitance of 
the physical source. Under these circumstances, 
the total spectrum has been "preserved." 

Wolf [2] expressed the belief that the tacit as- 
sumption of isotropy of spectral emission is "im- 
plicit in all of spectroscopy [but] does not appear to 

Fig. 2. Newton's experimentum crucis on spectral preservation. 

have been previously questioned because with light 
from traditional sources one has never encoun- 
tered any problems with it." A different point of 
view is adopted in this paper. The isotropic propa- 
gation of a source spectrum may perhaps be an as- 
sumption dictated by necessity in astrophysical 
observations when it is not possible to study the 
light from stellar objects in different directions. 
However, this assumption would hardly be made 
tacitly by experienced spectrometrists dealing with 
man-made sources. There are probably no labora- 
tory sources at all that emit strictly isotropic radia- 
tion. Physical realizations of blackbody sources 
incorporate apertures that diffract the isotropic 
thermal radiation generated inside the blackbody 
cavity, before it emerges into free space. The 
Planckian emission of metal-strip or coil lamps is 
modified by the spectral emissivity of the metal, 
which depends on wavelength as well as direction 
and can therefore cause spectrally dependent an- 
isotropies. Additionally the finite size of the emit- 
ting strip or coil introduces diffraction and 
polarization effects, and coil lamps exhibit shadow- 
ing effects that cause a directionality of emission. 
In absorption spectrometry, spectral anisotropy can 
arise from the dichroism or pleochroism of sam- 
ples. In photoluminescence spectrometry, the spec- 
tral anisotropy of polarized samples is a commonly 
known phenomenon. Accordingly, carefully per- 
formed spectrometric experiments usually involve a 
"mapping" of the radiation emitted or transmitted 
by sources and samples. That is, directional and 
spectral scans are performed to assess the magni- 
tude of departures from the idealized case of angu- 
lar and spectral isotropy. The tacit assumption that 
is made when such measurements are performed 
is, not that the spectrum is invariant in the sense 
defined by Wolf, but that it is preserved in the 
sense of Eq. (13). 

Wolf and Gamliel [7] have cited an equation 
similar to Eq. (14) and, likewise, considered it to be 
a manifestation of energy conservation for each 
frequency component. However, they asserted that 
"there is no contradiction with the energy conser- 
vation law when the normalized spectrum changes 
on propagation." Their argument appears to be 
that generalized source quantities such as the spec- 
tral radiant exitance of Eq. (15) are defined in 
terms of the Fraunhofer approximation of the 
cross-spectral density W{PiJ'2,<a), and that this ap- 
proximation is not valid in the source plane. This is 
true. The evaluation of diffraction integrals in close 
proximity to a physical source is difficult and has 
been attempted only in special cases. For example. 
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Agrawal and Gamliel [4] have presented theoreti- 
cal results for the paraxial propagation of partially 
coherent light at distances on the order of a few 
hundred wavelengths from a planar source. In one 
case considered they found that the spectrum, 
viewed at a fixed angle, first shifts towards the blue 
and then towards the red as the propagation dis- 
tance increases. It is not within the purview of this 
paper to discuss these findings; the authors used a 
different mathematical approach and did not quan- 
tify the accuracy of their calculations. On the other 
hand, it should be noted that laboratory determina- 
tions of source parameters always involve measure- 
ments made at a distance. To determine the 
spectral radiant exitance of Eq. (15), a spectrora- 
diometer would be used to measure the spectral 
radiant flux of Eq. (11) for specified geometrical 
conditions, and often the measurement would be 
performed under conditions that justify the Fraun- 
hofer approximation. Thus, Eqs. (13) and (15) may 
suffice to demonstrate the invariance of light prop- 
agation in free space and spectral preservation un- 
der normal laboratory conditions. Because of 
various approximations made in deriving propaga- 
tion equations such as Eq. (6), it may not even be 
possible at all to rigorously "prove" energy conser- 
vation. On the other hand, it seems safe to pre- 
sume that conservation of energy, if not assumed 
explicitly in coherence theory, is implicit in 
the electromagnetic theory underlying it. The 
Helmholtz equations [Eq. (5)] apply to individual 
frequencies, and thus appear to imply that spectra 
do not change on free-space propagation and are 
preserved. 

5.    Similarities and Differences Between 
Coherence Theory and Classical Wave 
Optics 

5.1   Propagation of Cross Spectral Density and 
the Huyghens-Fresnel-Kirchhoff Principle 

Turning to the question how spectral modifica- 
tions due to partial coherence differ from classical 
diffraction and interference effects, we note that 
the Helmholtz equations [Eq. (5)] for the free- 
space propagation of cross-spectral density were 
derived from the corresponding Helmholtz equa- 
tion for classical wave amplitudes [24]. This sug- 
gests that Eq. (6) is, in fact, a straightforward 
generalization of classical diffraction theory. 

There is, however, a practical difference in that 
Eq. (6) traces the propagation of cross-spectral 
density only from one pair of points to another. 

while the classical Huyghens-Fresnel-Kirchhoff dif- 
fraction integral traces the propagation of wave 
amplitudes from a source to an aperture and on to 
a point of observation in one sweep (Fig. 3). In 
order to eliminate this difference, we can apply Eq. 
(6) twice; first, from a pair of source points (PiJ'2) 
to a pair of points (21.G2) in the aperture plane, 

W{Qi,Q2,b)) = (cosfl,cos£b)/(A V2) 

X /dPidPi W{PiJ>2,a>) txp\ik {PiQi -PzQi)];   (16) 

and then from {QuQz) to a pair of points (P'IJ^'T) 
in the diffracted wave field, 

I7(i"i,F'2,6>) = (cos0'icos0'2)/(AV'ir'2)x 

SdQidQ2 W(Qi,Q2,<o)Xexp[ikiQiP'i-Q2P'2)]. (17) 

Substituting the first equation into the second, we 
find , 

H^(i"i,P'2,6)) = (l/A*)(cos0',cosfl'2//-'ir'2) 

x/dPidi'2(cos0iCOS02/rir2) W{PiJ^2,(o) 

X /de,dfi2 exp[ik(P,Q, + Q,P\ -P2Q2-QJ"2)]. 
(18) 

Therefore, from Eq. (4) for P'^=P'2=P', 
r\=r'2=r',e\ = e'2^e\ 

E^{P') = W{P',P',(o) = (V\')(cos^9'/r'^) 

x/dJP|dP2(cos0icos02/nr2) W(PiJ'2,<o) 

X /de,de2 exp[/A:(i',e, + GiP' -P2Q2-Q2P')]. (19) 

P' 

Fig. 3. Notation pertaining to diffraction at an aperture. Tlie 
points and ligtit patlis sliown are not coplanar. The points P, Q, 
and P' represent either of the points Pi, Qi, and P'l mentioned 
in Sec. 5.1. 
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These equations are valid in the geometrical ap- 
proximations of Eqs. (7) and (8), without approxi- 
mations made with respect to the argument of the 
exponential functions in the integrands. 

If the primary source is planar and incoherent, 
Eq. (19) can be simplified further by expressing the 
cross-spectral density inside the first integral by an 
expression given by Marchand and Wolf [16], 

W(PiJ'2,(o) = (A^/cosft) L^Pua) 8(P2-Pi),   (20) 

where L„(Pi,a) is the spectral radiance at the 
source point Pi and in a direction a, and 8 is a 
delta function. Letting Pi =P, n =r, 0i = ff, we ob- 
tain 

E^(P 'i) = (l/A^)(cos^e '/r"-)S(dPcose/r') L^(P,a) 

X /dQidgz exp[ik{PQi + QiP' -PQ2-QJ"y\ 

= (l/A2)(cos^07r'2)/d/2L.(P,a)| 

x/deexp[/A:(PQ+<2P)f, (21) 

where dQ is the solid angle element subtended at 
the aperture center O by a source area element at 
P, and a is the unit vector in the direction PO. 

Since Eq. (21) can be recognized as the classical 
Huyghens-Fresnel-Kirchhoff diffraction formula 
for an extended incoherent source, we may con- 
clude: 

Classical optics and the theory of partial coher- 
ence give precisely the same results when ap- 
plied to diffraction problems that involve an 
incoherent primary source. It is immaterial 
which approach is used in practice. Laboratory 
physicists appear to prefer the Huyghens- 
Fresnel-Kirchhoff formula, perhaps because they 
are more familiar with it or because the partial 
coherence of the radiation incident upon the 
aperture is already built into the formula. Coher- 
ence theorists apparently prefer to think of aper- 
tures as secondary sources, and use the van 
Cittert-Zernicke theorem to describe their co- 
herence properties. The results are the same. 

Classical diffraction theory is not applicable if 
the primary source is partially coherent. In this 
case, a statistical treatment is required and co- 
herence theory must be used. Simple optical sys- 
tems, such as a single aperture or lens, can be 
analyzed by single formulae such as Eqs. (18) and 
(19). However, for more complicated systems 

involving multiple apertures or lenses, a step- 
wise approach may be more practicable because 
multiple combinations of Eq. (6) quickly lead to 
unwieldy expressions. 

It should be noted that the equations of this sec- 
tion no longer describe the free-space propagation 
of light and, therefore, no longer imply spectral 
preservation. There are two cases to be distin- 
guished when light is diffracted at an aperture: 

1. If the incident light is spectrally isotropic, the 
spectral concentration of radiant flux will be uni- 
form inside the aperture and the total spectrum of 
the diffracted light will differ from the total source 
spectrum only by a constant (frequency-indepen- 
dent) factor. The relative ("normalized") source 
spectrum will be preserved. 

2. If the incident is spectrally anisotropic, the 
truncation of wavefronts at the aperture will be 
spectrally selective. The total spectrum of the dif- 
fracted light will be different from the source 
spectrum by a frequency-dependent factor. The ab- 
solute and relative source spectra will not be pre- 
served. 
These cases occur irrespective of the state of co- 
herence of the primary physical source. Because 
spectral isotropy has generally been attributed to 
incoherent sources only, an important result of 
Wolfs original paper [2] is that he has postulated 
the existence of partially coherent isotropic sources 
whose relative spectra will also be preserved upon 
diffraction, and that he has rigorously defmed the 
properties of such sources. This is likely to have a 
significant impact on laboratory spectrometry. For 
example, the development of new imaging devices 
[8,11] which obey the conditions formulated by 
Wolf may be expected to reduce diffraction errors 
in optical radiometry. 

5.2   Example: Axial Diffraction Loss Due to a 
Circular Aperture 

The first assertion that "the large scatter found 
in the intercomparison of spectroradiometric scales 
is attributed to the spectral shifts" may be found in 
the above-referenced paper by Kandpal, Vaisha, 
and Joshi [9]. These authors stated that "apertures 
make the incoherent light partially coherent and a 
source correlation is introduced which along with 
the optics involved violates certain scaling law 
thereby modifying the spectral distribution of the 
source in the far zone." 

Diffraction errors in radiometry are, of course, 
well understood [25-34] by laboratory physicists. 
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The phenomenological interpretation of these er- 
rors is that, on account of the scale factor 1/A^ in 
the Huyghens-Fresnel diffraction integral Eq. (21), 
the different spectral components of light incident 
on an aperture are diffracted differently. If obser- 
vations are made on axis the spectral radiant flux 
will be found to be "blue-shifted," because diffrac- 
tion at an aperture spreads red light farther into 
the off-axis region than blue light (Fig. 4). For a 
circular aperture illuminated by a point source this 
is described, in the Fraunhofer approximation, by 
the Airy diffraction formula found in textbooks of 
optics. By reciprocity, the same treatment applies 
for an extended, incoherent circular source and a 
point detector on axis [26]. The result is a classical 
formula which was originally derived by Rayleigh 
[35], 

e(0)=Jo\kaw)+JiXkaw), (22) 

where e(0) is the axial diffraction loss, Jo and Ji are 
Bessel functions of the first kind, a is the radius of 
the aperture, and w is the angular radius of the 
source. 

Angle 1°) 

Fig. 4. Diffraction patterns for red and blue light. 

Foley [12] used the theory of partial coherence 
to derive the same result in a different form, 

S{z,(o) = (af/a^f S^yw) {1-Jo'[3.832a/L(co)] 

-7i2[3.832a/L(w)]}, (23) 

where S{z,(o) is the axial "spectrum" observed at a 
distance z from the aperture, a and a^ are the re- 
spective radii of the aperture and source, / is 
the focal length of a lens illuminating the 
aperture, S^°\(o) is the "source spectrum" and 

L(w) = 3.832//fejs. Foley's explanation of Eq. (23) 
was "that the spectrum of the light at an on-axis 
observation point in the far zone differs from the 
spectrum in the aperture by a simple geometrical 
factor and a frequency dependent factor... that de- 
pends only on the ratio ... of the aperture to the 
effective correlation length of the light in the aper- 
ture at frequency o). Hence the difference between 
the spectrum of the light at an on-axis observation 
point in the far zone and the spectrum of the light 
in the aperture is determined by whether the light 
in the aperture is effectively spatially coherent over 
it, i.e. whether the light in the aperture is globally 
coherent." 

Apart from confirming that classical optics and 
coherence theory give identical results for incoher- 
ent sources such as assumed here, this example 
also points to a communications gap between labo- 
ratory physicists and coherence theorists. The word 
"diffraction" is not mentioned once in the Kand- 
pal, Vaisha and Joshi and Foley papers. It is hoped 
that the above discussion will help bridge this gap. 

5.3   Example: Spectral Changes Produced in 
Young's Interference Experiment 

In a paper referenced above, James and Wolf 
[13] considered the optical setup depicted in Fig. 5, 
in which an incoherent, plane, polychromatic 
source with angular radius a=R/a is used to illu- 
minate a screen containing two circular pinholes of 
area A which are located at distances ±d/2 from 
the source normal. The source and pinhole planes 
are parallel to one another, are separated by a dis- 
tance which is large enough to justiiy the Fraun- 
hofer approximation, and the interference effect is 
observed at a similarly large distance from the 
aperture. The point of observation Po is located on 
axis and at equal distances r from the two pinholes, 
so that "colour effects, which are usually produced 
in interference experiments with broadband light, 
are absent." James and Wolf found the following 
expression for the spectrum observed at Po, 

S{Po,(o) = 2 5<'>(«) {A/l-rrcrf co^ [1 + 2/i(wca//c)/ 

((ocxd/c )]. (24) 

The conclusion of their paper was that the spectral 
effects produced by the experiment are two-fold: a 
blueshift due to diffraction which is described by 
the factor (o^ in Eq. (24), and a redshift due to the 
finite size of the source which is described by the 
Bessel function in the same equation. 
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James and Wolf expected an achromatic fringe 
in the center of the interference pattern. Quite the 
opposite is true. The central blueshift due to dif- 
fraction is to be expected for the same reason as 
previously illustrated in Fig. 4. It represents a clas- 
sical phenomenon which is described by the 1/A^ 
scale factor of the Huyghens-Fresnel-Kirchhoff dif- 
fraction formula Eq. (21). 

The central redshift due to the finite size of the 
source can likewise be explained by classical rea- 
soning. In the notation of Fig. 5, the contribution 
of a source point Q to the interference pattern 
at Po is given by [l + cos(wA/c)] dQ, where 
A = {(2S2 + SJ>a)-{QSi + SiPa) = QSz-QSx is the 
path difference of the interfering light. Referred to 
polar coordinates with the origin at the center O of 
the pinhole screen, we have Q = {pcosx,p^vn.x, 
-a), Sya=i±d/2, O, O), (G5i)^ - (QSi)^ = 
2prfcos;^, QSi + QS2~2a, so that 

A = [{QSif - (QSifViQSi + QS2) ~ (pd/fl )cosAr. (25) 

Hence, the spectral radiant flux produced at Po by 
the source as a whole will be proportional to 

fpdpfdxii- + cos[(wpd/c)cosx]} 

= lirfpdpll +Jii(o)pd/ac)] 

= TTR\1 + 2 Ji{(oadlc )/((oad/c )], (26) 

which is in agreement with Eq. (24). The physical 
interpretation of the redshift is that each point of 
the primary source produces its own interference 
pattern, the width of the fringes increasing with 
wavelength so that the outer portions of the source 
contribute more red than blue light to the central 
fringe. 

2R 

Fig. 5. Young's interference experiment. 

In a subsequent paper [14], James and Wolf con- 
sidered the off-axial spectral effects produced by 
Young's experiment in a paraxial approximation. 
They obtained, instead of Eq. (24), 

S(x,(o) = 2S^%0)) (A/2m:rf <sP- 

X {H- 2|/i(warf/c)l{a)adlc )|cos()3 + mdlrc)},  (27) 

where j; is the lateral distance of the point of obser- 
vation from the central point Po, and /3 = 0 or TT 
according to whether /i(...) is positive or negative. 
James and Wolf stated that they were dealing with 
"new aspects" of Young's experiment. 

Since an incoherent primary source was as- 
sumed, the spectral modifications described by Eq. 
(24) are classical effects. They were first investi- 
gated by Fraunhofer [1] and are explained in text- 
books, including those by Jenkins and White [36] 
and Strong [37]. Briefly stated, although white-light 
interference may not be visible to the unassisted 
eye, it still takes place in Young's experiment and 
can be observed with a spectroscope. The spectro- 
scope reveals "channeled spectra" in the form of 
dark bands in the neighborhood of wavelengths for 
which destructive interference takes place, and en- 
hanced colors near wavelengths that interfere con- 
structively. This is shown in the various figures of 
Ref. [14], and also by colored drawings in the 1897 
edition of Muller-Pouillet's "Lehrbuch" [38]. 
Nonetheless, the elucidation of channeled spectra 
by coherence theory is interesting and offers a 
novel point of view. 

6.    Concluding Remarks 

We have attempted to reconcile conflicting 
points of view of laboratory physicists and coher- 
ence theorists on correlation-induced spectral 
changes arising from the partial coherence of pri- 
mary and secondary light sources. We have shown 
that, under normal laboratory conditions and in the 
Fraunhofer approximation, the directional spec- 
trum of light does not change on propagation in 
free space and that the total spectrum is preserved 
in accordance with the principle of energy conser- 
vation. We have demonstrated that descriptions of 
spectral phenomena by the theory of partial coher- 
ence and by classical wave optics theory are fully 
equivalent for incoherent primary sources. We 
have emphasized that a statistical approach is es- 
sential, and coherence theory is required, for par- 
tially coherent primary sources. 
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We have also pointed out that the theoretical de- 
scription of light propagation in the proximity of 
sources is, by and large, still an unsolved problem. 
Most publications on partial coherence (this one 
included) use the Fraunhofer approximation, 
whereas optical radiometry often requires at least 
the Fresnel approximation. Theorists could make 
valuable contributions to optical radiometry by 
turning to this issue. 

The essence of Wolfs original paper [2] on cor- 
relation-induced spectral changes should not be 
misconstrued as a contradiction or modification of 
the classical wave theory of incoherent physical 
sources. Rather, it should be regarded as a general- 
ization and extension of classical optics that allows 
the description of phenomena arising from the 
properties of existing or newly developed partially 
coherent sources. Wolfs formulation of the condi- 
tions under which the spectrum of a partially co- 
herent source is propagated isotropically may lead 
to the development of new imaging devices that 
could reduce the magnitude of diffraction errors in 
optical radiometry. 
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